
• A0 A046 7kG CARNEGIE—MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER “ ETC F/s ian
ON THE BRANCHING FACTOR OF THE ALPHA—BETA PRUNING ALGORITHM. (U)
SEP 77 0 $ BAUDET N000ik—76—C—0370

UNCLASSIFIED NL
I~~~I
ADA

046746

I
.

END
DAT E
FISD

2-77
DOC

r~
-. - _____________ ___________

. ..

C
On the Branching Factor

of the Alpha-Beta Pruning Algorithm

Gerard M. Baudet

Department of Computer Sctence
Carnegie-MeLLon Universtty

Ptt tsburgh, PennsytvanLa 15213

September . 1977

DEP ARTME NT
of
COMPUTER SCIENCE D D C

NOV 22 1977

c~~Ji LI~~)[~U U ~B
11111 ____________

_ _ _

ON STATEMENT A

Carnegie-Mellon Unive rsit y

- ~~~~~~~~~~~~~~~~~

J0 n the Branching Factor

/ of the Alpha-Beta Pruning Algorithm .

‘ / j G~~ard M./Baudet

Department of Computer Science
Carnegie-Melion University

Pittsburgh 1 PennsyLvania 15213
/ -— — p

/

// ,1
t septamber,19:7

‘

~
_~~

/

D D C

1 U) N O V ~~ 1977

j

Keywords and phrases
analysis of algorithms~ combinatoria l analysis , alpha-beta procedure , minimax

procedure , tree searching , game tree , problem solving

CR categories
5.25, 3.64 , 3.66

Abstract
An analysis of the a lpha-beta Druning algorithm is presen ted which takes into

account both shallow and deep cut-of fs. A formula is f irst developed to measure the
average number of terminal nodes examined by the algorithm in a uniform tree of degree it

and depth d when ties are allowed among the bottom positions: specifica lly, all bottom
values are assumed to be independent identically distr ibuted random variables drawn from
a discrete probability distribution. A worst case analysis over aU possible probability
distributions is then presented by considering the limiting case when the discrete
probability distribution tends to a continuous probability distribution. The branching
factor of the alpha-beta pruning algorithm is shown to grow with it as EJ (n/ tn i t), therefore
conf irming a claim by Knuth and Moore that deep cut-offs only have a second order effect
on the behavior of the algorithm.

This research was partl y supported by the National Science Foundat LMGS..
75-222-55 and the Office of Naval Research under Contract j t~~Oø14-76-C-ø37~, ~~

-

NR 044-422 and partly by a Research Crant from the Institut de ~~~~~~~~~~~~~~~~~~~~~et d Automatique (IRIA), Rocquencourt , France.
/ ‘V / ~fr1C~~—~

~~~~~~~~

V

APPrOVe~~ fOT D, 1 r 0 -L



1 — Introduction

Most so-called intelligent programs use some form of tree searching; among them,

most game playing programs are built around an efficient tree searching algorithm known

as the a.Lp ha-beta pran~rtg a1gor ~thrn . This paper investigates the eff iciency of this

algorithm with respec t to a cost measure f irst introduced by Knuth and Moore in [3] and

given in the fo llowing.

Definition 1.1:

Let N
~ ,d be the number of terminal positions examined by some algorithm A in

searching a uniform tree of degree it and depth d. The quantity

= ~rn (Nn,d)1”
~

is called the br arz ch~.itg factor corresponding to the search algorithm A. U

SimiLar anaiyses have been attem pted in two recent papers by Fuller , Gaschnig and

Gillogly [1] and by Knuth and Moore [3]. Both papers address the problem of searching a

uniform game tree of degree a and depth d with the o~-8 pruning algorithm under the

assumpt ions that the static values assigned to the terminal nodes are independent

identically distributed random variables and that they are aLL d~stirtct . We immediately

observe lhat , in order to eva luate the branching factor , the last assumption requires that

the r distinct values assi gned to the terminal positions be taken from an infinite range.

For most practical applications this is , however , unrealist~c.

Fuller , Gaschni g and Gillogly developed in [1] a general formula for the average

number of terminal positions examined by the ~-~6 procedure. Their formula , however , is

computationatty intractable and leads to undesirable rounding errors for Large trees (1. e.,

for large a and d) since it involves , in particular , a 2d-2 nested summation of terms with

alternating signs and requires on the order of ~ d steps for its evaluation. Then they gave

some empirical resu lts based on a ser ies of simulations , and compared the results with

actua l measurements obtained by running a modified version of the Technology Chess

Program [2]. I



2

In [3], Knuth and Moore have analyzed , under the same condiVons , a s impler version

of the full cx-/3 prunin g algor ithm by not considering the possibiLity of deep cut-of f s;  they

have shown , in particular , that the branching factor of the resulting algorithm is O(a/t n a).

Knuth and Moore also considered other assumptions to account for dependencies among the

static values assigned to the terminal positions and developed analytic results under those

assumptions. Their paper gives , in addition, an exce llent presentation and historical

account of the c~-/3 pruning algorithm.

Departing from the assump tions of the two papers we just mentioned , we f irst

consider the e f fec t  of poss ible equalities between the va lues assigned to the terminal

nodes of a uniform tree , assuming that these values are independent identically distr ibuted

random variab les drawn from any disc rete probability distribution. In Section 2, we

establish some notations and preliminary results , and in Section 3, we derive a genera l

formula for the number of terminal nodes exarime d by the ~~~~~~ pruning algorithm when we

take into acco unt both shallow and deep c ut-o ff s .  The evaluation of this formula requires

only a finite summation over the range of possib le values assigned to the terminal nodes

and is relat ively easy. We show , in particular , tha t , when the term inal nodes can only take

on two distinct values, the branching factor of the ~~~~~~ pruning algorithm can grow with a

as O’ii~l.n a) for some choice of the probab ility distribution. In Section 4 , we show that ,

when the discrete probabilit y distribution tends to a continuous probability distribution,

the summation derived in Section 3 can be rep laced by an integra l, which constitu tes the

wo rst  case over a lt discrete probability distr ibutions. In Section 5, an ana lysis of this

integral shows that the branch ing factor of the ~~~~~~ pruning algorithm for a uniform tree of

degree a g’o~~ wi th a as G(n/ tn n~, therefore confirm ing a claim by Knuth arid Moore [3J

that deep cut-o I ls  only have a secon d order ef fect  on the average behavior of the

r~ -(~ pruni”g .‘! g o r ’ t b~~. Some concluding remarks and open problems are given in the Last

“ct ic n.



~~~
- - - - . - —

~~~

2 — Presentat ion and Initial properties of the ~~~ pruning algorithm

There are two usual approaches for dealing with searchi ng a game tree. In [1),

FulLer , Gaschnig and Gillogly adopted the M~n-Mo..x approach , while, in [3], Knuth and

Moore chose the Nega-Mo...x approach . We will briefly present , in Section 2.1, the two

approaches and introduce the ~~~~ procedure in terms of the Nega-Max model. Then, in

Section 2.2, we will reestablish an initial result of [13 which was stated in terms of the

Miri-Max approach.

2.1 — The ~~~~ procedur e

Let us consider a game (Like chess , c heckers , t ic -tac-t oc or kalah) played by two

p layers who ta ke turns. It is commo n to represent the evolution of the game by means  of

a gam.e tree , where each posit ion of the game is represented by a node. If the position is

a dead-end, the node is ter m inat , otherwise all possible moves from that positton are

represented as the successors of the node. The structure of the tree is preserved by not

generating moves leading to some positions already generated (thus , avoiding cycles); this

is the function of the rrwve gerier~tor The eti o.2ucLtion fun .ctiorz is another important

function in game play ing programs; it assigns to each terminal position a static valiLe by

estimating various parameters such as piece counts occu pation of the board , etc. The

eva luation function evaluates the terrr:nal nodes f r o ~ one player ’s v iew p oint, giving

higher values to positions more fav o rab le t~ t - t s  p layer . ~t is convenient at this point to

name the two players Max and ~ in. Rence , ~~~ s s t ra tegy LS to lead the game towards

positions with higher values , while Mm ’s s t ra tegy is to lead the game towa rds positions

with tower values.

The rrü ru rna z procedure is directly based on this formulation and can be used by

either Max or Mm to decide on his next move fro m a given position , assuming t ha t  his

opponent w ilt respond with his best move. Using a rather brute fo rce approach, the

minimax procedure assigns values to all nodes of a game tree. It f irst assigns to terminal



nodes the resu lts of the evaluation function , then it backs-u p to internal nodes

corresponding to a p. lion fro m wh ich it is Max ’s (Mm ’s) turn to ~~~ the maximum

(minimum) of the vat ues asr i gnee to its succe ssors.

Suppose it is Max ’s turn to play from an init ial position (correspond ing to the root

of the game tree ) , then it is his turn to play from any pos itions at even depth and kim ’s

turn to play from any posi tions at odd depth. T herefore , the n~rrex procedure will

back-u p va lues to the nodes of the game tree throug h a success ion of

Minirna~ ir~;,’Max in~az in E. oo o ra t io rms . This corresponds to t~ e M~n- M~ x approach.

By ob rv in~ th.~t :

rnax~ r~ n~ X 1, Z 2~ L ~~~ y ,  }, ... }

mo~~ -mad -x 1, - x 2 , ... }, -ma~~{ 
~v ~~2’ —.

t he kfm n—Mi ~ .~~pro~ ch c~rn he d,’ec t~y r e f o r ~~ui.it~ d ir,~o the Nc --~.’.~r ~pr u.c h . In t~ u

Nuga ~~~ fc~ r’~~l~ tiur., a ~ur’i ’.na l node of a game t r o c  suould be a~~ .~ ned the resj l t  of the

evalua tion funct ion O~~~ 
if i t  is at an ev~’n depth (a crum .rg it is in~t .a~ly ~‘~ x ‘s t u ’s  t .~

F ploy) asd it should be ~.. signed th~ up~ os itu of the result of the ev ,uu~ Lon ~c u : t & O n  i f  it is

at an end dep th. The N~~~2~ *.~ appra i~ch requires the sar ’ e c pe rat ....’ at alt levels ~~
‘ a

game t ree , and the u’~ fo rm i ly of the notat ~un ~~~ rr~a~.e it eas ~ur to ca r ry  cut ,in

This approach ~~~ be used th roughout.

/ //\

Figure 2.1 - Searching a garr e tree wi t h the minima~ procedu re 

.— — .,. — 



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~

Figure 2.1 shows the e f fec t of the n,inimax procedu re in a uniform tree of degree 2

and dept h 4. The values assi gned to the terminal nodes have been chosen arbitrarily. The

path indicated by a darker Line shows the sequence of moves selected by the procedure.

The minimax pr ocedure is clearly a brute force sea rch and, w hen exploring a node ,

it uses none of the informatio n already available from the nodes previousLy explored.

Obviously, by tak ing advantage of the information previously acquired we can easily

improve on the brute force sea rch. Figure 2.2 presents so me simple pat terns in which the

distribution of the information could lead to such improve ments.

2~ :2~~~
(a) shallow cut-of f

2

Kb) deep cut-o f f

Figure 2.2 - Exa ’s ples of possible cut-ot is

Tue c~rsied -odes hove a lready been exol ored , and t hey are labeled with their backed-up

va lues, the values cf the other nodes a re yet to be d e te r rn~red. We are intereste d in the

value v & the ~op ~ev~~l node ~n both pat te rn s (a) ~nd K b).

Let us onr ~der the pat tern o~ Figure 2.2 (a) f irst. From the definition of the

mirin’ax procedu re , the va~ues u and x

v max (3 , -x , x — max (—2 , ... }

which shows t hat x � -2 or 2 � -x. Since 3 ~ 2 ~ -z , it follows that Lri depe ri de rU of the

ezc.c~ v~Lue of r , we will have u — 3. This shows that we need not explore further the

succes s ors of the node labeled x if we are only interested in the value of u. This leads to

a first type of cat-a Ifs known as shallow cut -offs.

6

The pattern of Figure 2.2 Kb) illustrates a deeper cut-off. As with the previous

example , there are immediate relations between the values of the nodes. In particular , we

have y � -z , which leads us to consider two cases. Either y > -z , and this means that the

value y is determined by its rig ht son(s) and certainly does not depend on the right son(s)

of z. Or y = -z , in whic h case , since x � -y and z � -2 , we deduce x � -2 or -z ~ 2; but

since u — rnax { 3, -x) it fol !.ows that t’ 3 , independent of the exact value of x and, a

fortiori , independent of the exact va lue of z. This shows that in either case the successors

of the node labeled z need not be further explored since the final value of u would in no

w a y be affected.

The two exa mol es presented in Figure 2.2 indicate that a reduction of the search

can be ach ieved if a node passes down to its sort s the current value backed-up so far (3 in

the case of the two above examp les) as a bound for pruning branches 2, 4, 6, ... levels

below; the bound can , of course , be improved as the search progresses down the tree

(leading to more arid more possible cut- o f f s) .

Using two bounds for even and odd levels of a tree , these improvements are

imp lemented in the hcltowing procedure adapted f rom [3].

integ~er ~~~cedure ~LPHAB ETA(posi t ion P, ~~~~er alpha , integer beta):

~~~~ 
integer j. t , a;

determ ine the success or positions: P1 
if a = O  t hen

ALPH.ABETA 1(P)
else

for j : =  1 ~~~ 1 until a do

t := -ALPH.A BETA(P1, -be ta ,-alp ha);
~j . t > alpha then alp ha : t;
if alpha � beta then ~~~ done (2.1)
end;

done: ALPHABET A := alp ha
end

end

The alpha-beta procedure (from [3])



7

The function denoted by f is the evaluation function which assigns static v’o..Lsj .es to terminal

positions.

Knuth and Moore [3) have shown this procedure to be correct  in the sense that the

call ALPHABETA(P,-co,+a,) assigns to position P the value MINIMAX(P) , which is the value

assigned by the minimax procedure. More generally, they showed [3, p. 297) that:

ALPHABETA(P,alpha ,be ta) � alpha , if MINIMAX(P) � alpha , (2.2)

ALPHABETA(P,alp ha ,beta) — MINIMAX(P), if alpha < MINIMAX(P) < beta , (2.3)

ALPHABETA(P,at pha ,beta) � beta , if MINIMAX(P) � beta. (2.4)

The same tree used in Figure 2.1 to illustrate the minimax procedure is shown in

Figure 2.3 to illustrate the effects of the ~ -~3 procedure.

1 1

~¼

p
/ %.. /\ . / ‘~, ‘~

I~~~~ A ~ ~~~~~~~ ~~~~ ~~~~~~

Figure 2.3 - Searching a game tree with the c~-i2 procedure

The branches pruned by the procedure are indicated with dashed lines , and the nodes

marked wi th a circle have not been completely explored. We observe that only 8 out of

the 16 terminal positions and 19 out of all the 31 nodes are examined by the ~i-/3 prun ing

al gorithm in this example , reducing greatl y the cost of searching the tree. As is seen by

comparing F,&ures 2.1 and 2.3, the values backed-up by the o~-/2 procedure to some

internal nodes are not necessarily the same as the values backed-up by the minimax

procedure , as ref lected by the indetermination in equations (2.2) and (2.4). The top value,

however , is not af fec ted by this indetermination.



.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

8

2.2 — Some properties of the ~c-4 pruning al gorithm

in this section , we w ill introduce some notations which will be used throug hou t , and

we w ill reestablish , in terms of the Nega-Max approach , an initial result of [1) giving a

necessary and sufficient condition for any node of a game tree to be examined by the

~~~~~~~ pruning algorithm.

2.2.1 - Notat ions

As in [3], we will use the Dewey decima l notation to represent a node in a tree .

More precisely, let c , the empty sequence , denote the root of the game tree. Then, if

deno tes some internal node of the tree with a sons , ~
.j will denote the j-th son of node ?~

for j I a. In Figure 2.~Z , node 4.1.3.4.3 is the node at depth 5 whose path from the

ro ot is indicated with a darker line.

2 Root

2 :
~~~~
:

2

~~~

-3 ~~~ ~~ c(4. 1.3) - 3

9 5
~J 5 -4 c(4 .I.3.4) — -5

0 8 7 - c(4.1. 3. 4 .3) ~ 0

~ (4.1.3.4.3) - max { c(4.1.3.4.3) , c(4.1.3) , c(4)) - 3

~8(’4.I.3.4.3) — -max~ c(4.I.3.4) , c(4.I)) — 5

Figure 2.4 - Portion of a game tree showing the path to node <4.1.3.4.3>

The value associated with some node ~ of a game tree by the minimax procedure

(see Section 2.1) wilt be denoted by v(~). Then, if ? is a terminal node , v(~
) i.s the static

9

vaLie asigried to that terminal position, and , if ~7 is an internal node , v(~) is the value

backed-up to node by the minimax procedure. In the latter case , if node ~ has a sons ,

~~~~~~~ is given by:

max { -v(?.j) I � I a ) , (2.5 )

In Figure 2.4, the nodes on the path from the root to node 4.1.3.4.3 are evaluated throug h

formula (2.5) while the other nodes (including 4.1.3.4.3) are shown as terminal nodes end

are assigned arbi tra ry values. (Nodes are labeled with the ir values.)

While the values v(~ ) dea l with the static a t oect  of a game tree , the quantities we

will introduce next deal rr~~ce with the dynamic aspect of the tree when being searched by

the ~~~~ procedure.

For any node ~.j a t dep th d � 1, we define:

c( .j )  — max{ -u(~7.s) I � i � j - l  )
(By convention , the max imum over an empty set is defined to be -

~~~~
; in particular ,

c(?.1) — -a~.) For the root of the tree we also define c(e) -a~. The quantit y c(~7) accounts

for the information provided to node ~ by its elder brothers. These values are indicated

to the rig ht of the game tree shown in Figure 2.4 for all nodes on the path to node

4.1.3.4.3; only the nodes ~ndicated with squares are used in computing these values.

We finally define for any node ~ = id at depth d a I in a game tree two

quant ities d~rect ly associated wi th node ~ by the ~-48 procedure. For I C, ..., d-1 , let

— 1d-i We define:

max { c(?1) i is even , 0 � I � d—1

— -max{ c(,~~) I is odd, 0 � I � d-I)
It is convenient to define these two quantities for the root of the game tree by c~t(c

) —
~~~

arid ~3(~) c0 (which is consistent with the definition) . These ~~~- arid ~8-va lues are shown

in Figure 2.4 for the node 4.1.3.4.3 along with their definitions. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ . —~~ ~~~~~~~~~~~~~ ~~
.

~~~~~~~~~~~~~~~~~~~ 
. .



-~~ -~~~ — --- ---- ~- 
_.... - .— -.---- -. .- -. . ... . .~~~~~~~~~~~~ . .—.. -~~

10

2 2.2 — Necessa ry and sufficient condition for a node to be exp lore d by the oc—4 procedure

The follow ing ie tm ma justifies the notations we just introduced in the preceding

section.

Lemma 2.1:

Assume that , initially, the root of a game tree is explored by the c~-~2 procedure

through the call

ALPHA8ETA(root ,-~~,’co) . (2.6)

Then, ~f node ~ is examined , it is through a call of procedure ALPHABETA in wh Lch th~

parameters alpha and beta satisf y:

alp ha = cx(’~1) , 
(2.7)

beta . (2.8)

Proof:

If ~ Ij deno tes sorti e node explored by the procedure at depth d a I , let , as

before , ~~ = Jd-I~ 
for 0 ~ �d- 1. Thus node is the father of node , while , if

a 2 , node i~~d 1
~ 

is the brothe r of ~ immediately preceding ? (and explored just

before ~~). Observe that , if = I , c ( 0~ = c(~~ = -a, and therefore:

— max t c(~~) i is even, 0 s t~ d—1

— — ( -ma x( c ( j ~, 1.’ I ~ is edd , U t � d-2 
~ 

)

= -

(s imilarly, ~~~ — -~~t~~~)). Observe also that , if a 2:

— rnax{ 
~~~~ 

c~~) }

. max (
~

(c
~2~

, C[~~j
X,/d I)] , -v[

~ j . (J d — I)))

and that ,~?(~~)

By the ca ll of line (2.6), relations (2. 7) and (2.8) certa int y hold ~cr the root of the

game tree , s~nce — -a and ,~(c) — ‘a,. Then the proo~ fol lows by induction f r~~~~

inspection of the procedure ALPHABETA , and from the relate . tis we derived above.

______________________________ .
~~~~~~~~~~ ____



11

The following theorem states a useful relation that characterizes the fact that a

node of a tree is explored by the ~~~~~ pruning algorithm . This relation was first

establis hed by Fu ller , Gasc hnig and Gillogly [1] with different notations in terms of the

Mm -Max model.

Theorem 2.1:

Assume that , initially, the root of a game tree is explored by the ~~~~ procedure

thr ough the call

ALPHA BETA(root ,-a,,.co) .

Then , an arb itrary node ~ of the game tree will be subsequently explored if and only

if

< ~
3(?) . (2.9)

Proof:

Because of the presence of line (2.1) in procedure the ALPHABETA , the result

follows directly from the result of Lemma 2.1. U

Since it will be more convenient in the following sections , rather than 
~

(c?) and

we will use the quantities:

A(~ ) max { c(?) Ii is even, 0 � I � d-l }
B(~~) = max( c(?1) I is odd , 0 � i � d- 1 }

where is defined as before. The definitions of ,1(~
) arid Bf ’a) are more symri etricat , and

relation (2.9) can also be rewritten in a more symmetrical way:

+ B(~ ) < 0 . (2.10)

3 - Number of nodes exp lored by the o~-~~ procedure: discrete case

As tn [1) and [3), we wilt evaluate in this and the following section the amount of

work perf ormed in searching a r.indom uniform game tree using the ~~~~~~~ pruning algorithm.

The def inition and sorti e properties of random uniforr?1 game trees are given in Section 3.1.

The amount of work performed by the ~r-/2 procedure is measured by the number of

terminal nodes examined during the search and is evaluated in Section 3.2. 



—
~ ---~ --~ - - - - - . - - .  - —

12

3.1 — Random uniform game trees

In order to perform an analysis of the a~-f3 pruning algorithm, we will limit

ourselves and cons ider the following class of game trees.

Def inition 3.1:

A game tree in which

(a) all internal nodes have exactLy a sons , and

(b) alt terminal nodes (or bottom p ositi.on~) are at depth d

is called a uniform game tree of degree a and depth d.

A uniform game tree which satisf ies the additional condition

(c) the values assigned to all terminal nodes (or bottom uai.ues) are independent

identically distributed random variables

is called a raadom uniform game tree, or , for short , a rug tree. I

Unless otherwise specified , we wi ll only consider throughout a rug tree of degree a

and dep th d.

Since the value backed-up to a node by the minimax procedure only depends on the

backed-up values of its sons , we immediately observe that , by condition (c) , the backed-up

values of all nodes a t the same depth are also independent identically distributed random

variables . In the remainder of the sect ion , we will assume that the bottom values are

drawn fr om the finite set { k/ rn  -rn � k �rn }, for some m a 0, and we w ilt denote by

or simply {p~(k)} the common probability distribution for the backed-up

v~~ues of alL nodes at depth d - 1 (1. e., p1(k) is the probability that the value , u(?),

backed-up by the niinimax pr~” ‘Jurc to some node a at depth d-i be k/ rn) .  In particular ,

k is the common probab~u.tv distribution for aLl bottom values , and {pd (k) } is the

probabili ty dis tribution for the value backed-up to the root of the rug tree.

The following lemma states the relations between these probabilit y distributions.



13

Lemma 3.1:

For — 0, ..., d-1 , we have:

p1~ j (-rn) + ... + p~4 1 (k) - [p1(-k) + ... + p1(m))~~. (3.1)

Proof:

Let ~ be some internal node at depth d-i- 1, then by equation (2.5), v(?) � k if and

only if -v( .j) � /c , for j  — 1, ..., a. Equation (3.1) follows easily from the fact that all

variables u(a.j ) are independent. U

Since the quantit y p1(-/ c) + ... • p1(,n) wilt occur again Later on, we define for

I — 0, 1, ... and -m � k

= p1(- k) • ... • p1(tn)

For convenience , we also define ~‘1(-m- 1) 0. Note that is a non-decreasing function

of /c which sat isfies ~1(-m—! ) = 0 and ~‘~(rn) p1(-rn) + ... + p1(rn) — I. By rewriting

equation (3.1), we see tha t satisfies:

- I - [~~~~~jO for 1 0, 1, ... , (3.2)

and, therefore:

= 1 — { 1 — [~~(k) ] ~ }ht for I — 0, 1 (3.3)

The following quantities will also be useful in Section 3.2. For I — 0, 1, ... and

-rn-I � /c � m, def ine:

p1(k) — 1 + (ç 1(k) } + ... • [‘(k)]’~~ , (3.4)

and

o~(k)  — I [p 1(—k — 1) ]  • ... • ~~~~~~~~~~ . (3.5)

Observe that p~(-m- 1) - o~1(m) - I and p4(m) - o~(-m- I)  - a.

Lemma 3.1 establishes the probability distributions for alt the values in the nodes

of a rug tree. The next Lemma establishes a similar result for the quantities c(a ) defined

in Section 2. 

~~~~-
.- - ..- —- -. --~~~~~~~~~~~~~~- - - - - - -- - .

14

Lemma 3.2:

Let a.~ denote any node at dept h i, where — I, ..., d. If j — I, c(a.j) — -
~~~~. If

j  a 2, then the probabiLity distribution of c(?.j) , denoted by (q/c (?.j))_~~~/c~,,~, satisfies:

q_~~(c~.i) • ... + q~ (~ .j) — fp~,oc.)It  . (3.6)

Proof:

When j  — 1, c(~.j) - -
~~~ by definition. When j  a 2, equation (3.6) foL lows from the

same argument given in the proof of Lemma 3.1. U

In order to evaluate , through equation (2.10), the probability that a terminal node is

explored, we first need to determine the probability distributions for the two quantities

A(
~

) and B(?) . This is done in the following.

Lemma 3.3:

Let ~ — Jd-1 j j . j
~

denote any terminal node.

(1) If — I for all even integers I in the range 0 � I � d-I, then A(a) —

(2) Otherwise , the probability distribution for A(?), deno ted by
~ak(?)} m�k�m,

satisfies:

• ... + - fl~ t~ 1(k)]
~~~~, (3.7)

where the product denoted by 
~~e is extended to all even integers in the range

0~~ i �d - I .

Similarly,

(1’) If — I for all odd integers I in the range 1 � I � d~-1, then B(?) — -
~~~~

.

(2’) Otherwise , the probability distribution for B(?), denoted by (bk~’a))..msk~m,

satisfies:

+ -. . b/c(?) -
~~~ 

[~ 1(k))~~~
1
, (3.8)

where the produc t denoted by TI0 is ex tended to all, odd integers in it range

I � i � d - 1 .

Proof :

We wilt onLy c onsider N~
) since the proof relative to B(?) is the sa~ art (1) 

-—  - - -



- --~~~~~~~ - ---- . . .~~~~~~~ ---~~~~~~ -- 
_
15

follows directly from the definition. For part (2) , let ~~ denote the node Id-I I
~ 

We

note that A(a) ~~ k if and only if c(?1) � k for all even integers I in the range 0 � I � d-1

such t ha t j
~ 

a 2. Since the variables c(?1) are independent , equa tion (3.7) follows from

equation (3.6k by observing that , in the product 
~
1e’ a factor corresponding to —

amounts to 1. I

The last lemma in this section states the probability of exploring a terminal node.

Lemma 3.4:

Let ? — Id-I ~i ’~o denote any terminal rode. The probability ‘r(a) that node

~ is exam ined by the ~ -~3 procedure is given by:

— I if — I for all even integers I in the range C � I � d-J,

— 1 if I1 — I for all odd integers in the range I � I � d-I ,

-rn�~ �rn- I 
a/c (?) {b _ m(

~
) + ... • b~~~1(~ ) ) otherwise. (3.9)

Proof:

When 
‘I 

I for all even integers i in the range 0 � I � d-I , by Lemma 3.3 ~f’,~
) = -a,.

Hence ~
( )  + B ( )  = -o., too , and by Theorem 2.1 node 

~ 
is certainly exp lored. Similarly

w hen j~ = I for all odd integers in the range I � I � d-1.

Otherwise , bo t h ~~~~ and 6~7~ are finite. Let 
~
(
~
) k. We observe that

A(~ ) B(?) < 0 if and only if -m ~. k � tn- I and -rn t B(J ) ~ -k - I .  Hence , equation (3.9)

follows f rom Theorem 2.1 and the fact that N?) and B(?) are independent variables. I

Using equations (3.7) and (3.8), equation (3.9) can be rewri t ten as:

- ~ a/c (~ ) IT~ (~~(~/c~j ) ] 14 1
,

-m� s, rn- I

— 
~~ ~

TT e [ ( /c )]J~~I - 11e [~ j Oc_ 1) f & ’) 11~ ~~~~~~~~ 
(3.10)

-rn� �m-I
(recall that çe~(-m- I)  — 0).



~~~~~~~~~~~~~~~~~~~ 
-- . -.- - -

16

3.2 — Number of terminal nodes examined by the ~~~~ pruning al gorithm: discret, case

We are now abLe to evaluate the amount of work performed by the
~~~~~~~ procedure

while searching a rug tree. As in [1] and [3], we have chosen to measure the amount of

work by the number of terminal nodes examined by the procedure. (We wilL also consider

br iefly, at the end of the section , the total number of internal and terminal nodes exp Lored

by the procedure as a measure of performance.)

Theorem 3.1:

The average number , Na j rn), of bottom positions examined by the

~ -,8 procedure in searching a rug tree of degree a and dep th d, for which the bottom
values are distributed according to the discrete probability distribution

is g iven by:

N
fl ,d(m) — ,~ d/ 2J + 

-rn~~�rn 
[
~~e p1(’~) - tie p~Oc-1)) IT0 ~~~~ (3.11)

where the quantities p1(k ) and o~(’k) are defined by equations (3.4) and (3.5), and

where the products denoted by TI8 and TI0 are defined in Lemma 3.3.

Proof:

By definition of the probability ~
r ( ) , the average number of bottom positions

examLned by the 
~~~~~~~ procedure is

N
~ ,d

(m) - Z ‘e(?) ,

where the sum is extended to all terminal nodes ? — 1d-1 11.10, and is actualLy a

d-nested summation over the range I
~ ~ a, I

~ � a, ..., 1
~ 1d-2 � a. The summation

can be rearranged as:

N
~ ,d

(m) —
~~

,r(~) ~
~~,

• Z ,r (?) - ir (I I) ,

w here the three summations Ze, ~
and Z correspond to the three expressions for ~r(?)

given in Lemma 3.4. The fourth term ~rf ’I 1) is subtracted from the sum since it is

counted by both Z, and I~. These two sums are easily evaluated since aLL the terms ,r(?)

are 1. As ‘r(I 1) itself is I , we obtain:

N
~,d(’m) — ~ 1d/21 • 0Ld~’2J - + 1 ~r(J.) . (3.12)

- -—- --- --- --- ,--—-
~~ - - — — -- —~~--- ------------

_ _ -
~~~~~~~~~

17

It is to be noted that the first three terms correspond exactly to the number of terminal

nodes examined by the a~-f3 procedure under optimal ordering of the bottom vaLues

(see [5, p. 201]).

We now evaluate the sum I . Inside the sum the terms ,~(?) can be evaluated

through equation (3.10). We note that all the summations relative to j
~
, for I — 0, 1, ..., d-1,

can be done independently, eac h one being the -. of a geometric series. Using the

quan tities p1(k) and c-1(k) defined by equations (
~ ‘btain:

I’ 
— 

-m�~�m-I 
tTT e p1(k) - 

~~e ~~ 1 
‘ - 17e p 1(m-I)  1

The theorem follows from this last equation and equ~ iior t.~. 12), using the facts tha t

p1(rn) — a and that o-1(rn) — I. I

The formula of equation (3.11) can be easil y eva luated and provides us with a

measure of performance for the r~-,2 pruning algorithm. For some applications , however

(especially when the cost of generating moves is greater than the cost of evaluating

pos itions), d is more convenient to use the total number of nodes (internal and terminal)

explored by the procedu re as a r’~eas ure of perf ormance. Let Tad (ra) denote the average

& u s  number . The same way w e  evaluated 
~n,d(m) , we can evaluate T

fl ,d(rn) by summing

the probabilities ~r(?) over all nodes of the tree. We obtain:

T~ d(r
~
TL) — N

~~d(m) N ,~~ (rn) ... + N
~~d(rn) ,

where N
~ ,d(m) is the average number o~ nodes examined at dep th I, and is directly

derived from the expression of Nnd (ra) in equation (3.11) by replacing d by i and {p0 (’k)}

by 
~Pd_ I (k) }  (recall that {p 0 (k) } is the probability distribution for the values assi gned to

the terminal nodes and that 
~~~~~~~ 

is the probability dis tribution for the values

backed-up to nodes at depth I).

3.3 - Ri-valued rug trees

Although it is relatively easy in most game playing programs to obtain (by

inspection of the evaluation function) an accurate bound for the range of dtstinct values

—----~~~ . --- .-- -— -- — —~~~~-- -- - — - -.- - — - - -~~~~~— -- --

18

ass igned to the various positions of the game , it is usually not so easy to derive a good

estimate for the probability distribution of these vaLues. In the remainder of the section

we wilt study rug trees in which the terminal nodes can onLy take on two distinct values ,

and we will see , in particular , that a change in the probability distribution of these values

can Lea d to very important differences in the growth rate of N~~d
(,n) .

We will assume in the following that the values assigned to the terminaL nodes of a

rug tree can onLy be either -1 or +1 with respective probabilities I-p and p, for some

p C (0 , 1]. Under these conditions, the number , Ta,d(p) , of terminal nodes examined by the

~~~~~ procedure can be obtained as a particular case of equation (3.11) in which m — 1 and

is def ined by 
~o~

-11 I-p. p0(O) — 0, p0(I) — p.

Theorem 3.2:

L,t p0 .p, and, f o r i — 1 ,2,..., Let p 1 — I - p ~ ,j .

T
~,d(p) — ,.~[d/ 2 1 + a id/ 2 1 - I + (P 8 1)( P0 1) , (3.13)

with

P — IT ~~1 1  , p — ~T ~~~8 e j  . 0

where the products Ti8 and are defined as before.

Proof:

Choose m .. I and def ine the probability distribution 
~~~~~~~~~~~~ 

by p0(— I) — 1—p,

p0(0) = 0 and Po~
1
~

— p. Hence
~o(-2) — 0,

~~~~~~~~~~~ 
— p

~
(0) — p — p~ and 

~~~~ 
— I. By

equation (3.2) we obtain:

~~(— 2) — 0 , fD 1 1) ft’ 1(O) p1 , p 1) — l , for & — O , I ,

Then equation (3.13) follows directly from Theorem 3.1 and equations (3.4) and (3.5). I

Equation (3.13) can be evaluated very easiLy and, in particular , we note that for

0 < p < 1:

T
fl,d(p) > Ta,~(O) — Tn,d(I) — ~1d121 + n Ed!2] - I . (3.14)

This Last equation shows that Tf l d (p) reaches its minimum + ~ Ed/ 2J - I for
~

— 0 and

p — 1. This is in agreement with the result of Stag le and Dixon [5, p. 201] since it

~

19

corresponds to the case when all terminal nodes are assi gned the same value and

therefore alt possible cut-offs do occ ur. Equation (3.14) also shows that Tn,d(p) admits a

maximum for p C (0 , 1) ; aLthough the exact maximum cannot be readily obtained , we will

derive a lower bound in the following. We f irst establish a preliminary result.

Lemma 3.5~

The unique positive root ,
~~~~~ 

of the equation

+ ~ 
- I - 0

is in the interval (0, I) .  Asympto tically (for large a) it sat isf ies:

I - — In a .  (3.15)

Proof:

As there is no ambi guity , we wi l l , drop the index a f rom in the following.

Let g(x) = ~ z - I , note that g(0) — -I < 0 and g (I)  — 1 > 0. Since g (z) is

continuous and s trictly increases for x positive , the equation g(x) = 0 admits a unique

posit ive root , ~, wh ich is in the interval (0, 1) .

We observe that equation ~ - I 0 can be rewri t ten as

= 
I

I (i + + ... + ~n- 1)
from which we deduce tha t

I - I >  __ L_ . (3.16)

On the other hand , since ~~~ — I - 
~~, ~e obtain

a (~ 
- I)  a In ~ —

which shows , along with equation (3.16), that

I - 
~~ ln(n~I) = In a + O(n 2) . (3.17 )

Similarly, taking the logarithm of both sides of equation (3.17), and using the facts that

- — ~~~ and tha t In ~‘ > I - .L , we obtain:

1 <
I • ln(n/l n n+I )

hence:

I - > ~ ln(aJln a~1) + In a)2 ] — In a In In a).

Equation (3.15) follows directly from the previous equati on and equation (3.17). I

_ _ _ _ _ _ _ _  . .
~~ 

-
~~~~~~~~~~~~~~~~~~~~~ 


-~~~~~~ -~~~~~~~~~~-~~~- - ~~~~~~~~~~ . ~~~~~~ . - -- -~~~~~~~~ ~~
--—-

20

When p — we obtain immediately that , for I — 0, 1, ..., p
~ — t~

. Hence

P8 — (la/(l_!n)) Id/21 and P0 —

From equations (3.13) and (3.15) it follows that , for large a:

Tn,d(ra) — (nAn ~j d , (3.18)

while equation (3.14) shows that

Tnd (O) — Ta,d(l) — O(a ld/21) . (3.19)

Equations (3.18) and (3.19) indicate that Tnd (p) can be LargeLy influenced by the

variations of the probabIlity distribution for the statIc values. This result can be easiLy

genera lized to N
~,d(m) . In the next section, we will derive an approximation to N

~,d(rn)

which corresponds to its worst case behavior.

4 - Number of nodes explored by the oc~~/3 procedure: continuous case

In this section, we derive an appr oximation to N
~~d

(m) by considering the Limit of

the finite series of equation (3.11) when ,n tends to infinity while the discrete probability

distribut ion {p O (k))_ m �k�m tends to a continuous probability distribution. This

corresponds to the case studied by Fuller , Gaschnig and Gillogly [1] and by Knuth and

Moore (3] when the terminal nodes of a rug tree are aLl assigned distinct values. In

par ticular , we wilt reestablish (with a much simp ler formula) a result of [1].

4.1 — Notations and preliminary results

We first introduce the sequence of func tions (f t) mapping the interval (0 , 1] into

Itself , and defined recursively by:

f0(x) -

f 1(x) — 1 - {1 - [f ~ 1(z)]’~} ’~ for j — 1, 2

It is readily verified by induction on i that all functions 14 are strictly increasing on [0, 1]

and satisf y f~
(0) — 0 and — I , i. e., 0 and I are two fixed points of the functions f~, for

alt a and &. The f unc t ion f~ wiLl be shown to be reLated to the quantities p24 (k) defined in

_ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~ .-

.~ -. -~~~~~~~~~~~~~~~——

Section 3.1. Similarly, in re lation to the quantities p 2~(k) and o-2~~j (k) , we define the

folLowing func tions on (0 , I] : for i - 1, 2, ..., let

r - (x) —
1-f 4 _j (z)

54(Z) —

If we define r~(I) — a and 54(0) — I , we observe that alt functions r 4 and 54 are continuous

on [0 , 1) (they are actually polynomials in x) , and that r~ is strict ly increasing while s~ is

st r ictly decreas ing.

In relation to the two products IT8 and IT0, we also introduce , for £ = 1, 2, ..., the

following functions on [0 , 1]:

R~(z) = x ... x r[4/21(x)

S4(x) — s j (x) x ... x

~IL/ 2 i ~~
where S’ 1(x) = 1. Observe here , too , tha t functions R~ and S4 are po lynomials , and that ,

w hen x increases f rom 0 to I , R1(x) increases from i to ~[i~’21 while S4(x) decreases from

~ 16~’2J to I.

Lastly, for k 0, 1 2m+1 , let

~ 0(k- m-1) .

Lemma 4.1:

F o r i = I , 2, ... a n d k = 0 2ri.I,we have:

(4.1)

— ~2i_ I (rn- I) . (4.2)

Proof:

We first show that for I 0, 1, ... and k — 0 2rn+I :

= W 2 rn-I) . (4.3)

Since f 0(x) — x , it fo ilows from the definition of rk that equation (4.3) holds when I — 0.

Assume , f or iruduct on, that equation (4.3) hoLds for — h. Then by equation (3.3)

— I - (1 - (,h(~k) fla

which shows that equation (4.3) also holds for i — h.1 (from the definition of

~

22 ~~~~~~~~~~~~~~~~~~~~~~~~

Observe that r 4(~k) + [f4_ i (~~
)] + +

~~~~~~~~~~~~~~~~~~~~~~~ 
then equation (4.1) follows

from equations (4.3) and (3.4). Similarly, if we note that s 1(z) can be rewritten as
— i t  rr  / nfl~n

( ) t~ LJ 4~•J ’~ ’•’J I
34 Z — 

~ 
— — [ J . j (x)) ~

,}

equation (4.2) follows from equations (3.2), (4.3) and (3.5). I

4.2 — Number of bottom positions examined by the ~~~~~~ pr ocedure: con tinuous case

Let us return to the definition of the sequence T,,,1 {
~ k} O~k�2rn+1• As was

observed in Section 3.1 with the sequence (~~(k) }, the sequence Tm is non-decreasing and

defines a partition of the interval (0 , I ] ,  I. e.:

0 — ~ ~I ~ ~ ~2rn ~ ~2rrt+ I

The norm of the partition T
~ 

is

IlT~ ll — max ( 
~k - r k_ ,  I � k ~ 2m~I ) — max ( p0(k) -in � /c ~ in }

In the remainder of the section we require the following.

Assump tion:

(Al) Lim max ( p0 (k)  -m � k � m } — 0. I

This assumption ensures that the norm of the partition Tm tends to 0 when in tends

to infinity. It also shows that , as in tends to infinity, the probability of two terminal

nodes being assigned the same value vanishes. This cor responds to the case studied by

Fuller , Gaschnig and Gitlogly (13, and by Knuth and Moore [33.

With this assumption , we will now see that the finite series of equation (3.11) can

be rep laced by an integral when ,n-.~ . This is established in the following.

Theorem 4.1:

Under assump tion (A l), we have:

Ltn~ Na I’~ 
— ~~Ld/2J + j

1 
R

~
(t ).Sdf’t) .dt , (4.4)

where R~ (z) is the first derivative of Rd(x) . 

— .
~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ - . -.~-- - --~~


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

23

Proof:

Since there is no ris~cs of confusion , we will drop, in the following, the index d from

the functions Rd and Sd.

It follows directly from Lemma 4.1 that for k — 0, ..., 2rn~I:

R(t /c) — ITe p4(k -m- l) ,

S(~~) - IT0 ~~(k-m- 1) ,

which shows that equa tion (3.11) can be simply rewritten as:

Nn d (f n) — ~ td12J +

1�k�~rn~I
[
~~~k~ 

- R(~/ c.. j ) J S(t~/c ) .

Let Am denote the series defined in this Last equation.

Recall that R(x) is a polynomial. By considering the Taylor development of R(~/c.. j ) ,

we ob tain for k = I 2rn.I:

R(~/c ) - 1
~~ k-I~ 

= [
~k-

~~-1] R
~~ k ) + 

~ 
[
~k -

~k-1]2 R ’Yt k )

where ~~~ � ~ ~
‘k Hence:

I�k�~m~I 
[ t k -e

~k _ J )  R~~ /c ) 5
~

-
~k~

~ ~~~
-
~~ - i J ~ 

R ”(t k ) S(
~k ) .

Since R and S are polynomials , the quantity R”(x) S(y)/ 2 1 is bounded by some constant ,

say M, for any x and y Ln [0 , I) .  In particu iar , the second sum in equation (4.5) is bounded

in module by M.H T ,,,j!.[
~2~~+j -

~’o) — M.JT~~I and the refore tends to 0 when m -
~ co since ,

from assumption (A l), IT~~II -+ 0.

As for the first sum in equation (4 .5), we observe that it corresponds to a Riemann

sum for the function R’ (x) S(z) over the partition T
~ 

of [0 , 1]. Therefore since , in

par ticular , this function is continuous and since J T~~1 tends to 0, the sum tends to the

integral of equa tion (4. 4). This proves the theorem. I

In the remainder of the section we wilt reinterpret the limit of N
fl,d(m) esta blished

in Theorem 4.1.

Let C be the distribution function of some continuous probability densit y function g, 



---.~~~ .

24

and assume , to simplify the discussion, that C(-I)  — 0 and C(I) — 1 (therefore , 0(x ) — 0 for

x � -1 and 0(r) — I for x ~ I) .  We define a sequence of functions 0m for in — 0, 1, ... as

tollows. For -in � /c ~ in, Let xk - k/rn. Function Cm is defined as the following step

function:

0 if

Gm(X) — C(zk ) if � z < , for -in ~ k � rn-I

I if L = x ~~ �x .

The sequence of functions {°~~ 
constitutes a sequence of approximations to the

cont inuous function C. (It should be noted that the convergence of the sequence is

uniform on the interval [0 , 1] .)  The funct ion C
~~ 

corresponds to the cumulative distribution

of the discrete probability distribution p0(k) — Cin(xk ) - C
~~(xk ) associated with the

points Z/c — k / rn , for Ic = -in, _., in.

Using the approximation (po (k) }_
~~�k�~ 

to the density function g, equation (3.11)

provides us with an approximation to the average number of bottom positions examined by

the ~-/~ procedure in a rug tree in which the bottom values are drawn from the continuous

probability density func tion g. When in becomes larger , the approximation becomes

better , and (due to the uniform convergence of the sequence G,~) it can actuaUy be shown

(In a rather technical way ) that the limit of N
~,d(rn) when in -+ ce corresponds exact ly to

the average number of bottom positions examined by the ~-~8 procedure in the continuous

case. As a matter of fact , equat ion (4 .4) could be derived directly by considering a

continuous probability distribution rather than a discrete one in very much the same way

we derived equation (3.11) in Section 3. This result is stated in the following.

Theorem 4.2:

Let f0(x) — x , and, for — 1, 2, ..., def ine:

f1(x) j  — — [I. 1(~)Jnla

r.(r ) —
I-f ~ j (x)

f4(x)s4(x) — [ f 4_ 1 (~)) a

-.- ---- ---- -.___________________



U 
. -. . - — -.- --- -- —-.-- -------- . ...-- - .-. ..- - . . - _____

25

R
~
(x) — r1(x) x ... x r1~12,(x )

S4(x) — s 1(z) ~ ... x s1412J (x)

The average number , N~,d, of termina l nodes examined by the ~-/3 pruning algor ithm in

a rug tree of degree it and depth d for which the bottom values are drawn from a

continuous distribution is given by:

N
~,d — ~ Ed/ 2i + 10

1 
R

~
(e) .Sd(t) .de .  (4.6)

It is to be r ated that , unlike the case of a discrete probability distribution, when

the bottom values are drawn from a continuous distribution, the number of terminal

positions exam ined by the c~-/~ procedure does not depend on the distribution function.

4.3 — Discrete case versus continuous case

Since equation (4 .6) has been derived as the limit of equation (3.11), it is reasonable

to investigate the validit y of the approx imation of N~~d (m) by N
~,d. As was seen in

Section 3.3, N
~~d

(m) strongl y depends on the probability distribution (p o (k) } ..~~~k�in and,

therefore , we car,no~ expect  Nad to be a close approximation of N
~,d(rn) in all cases. We

will see below , however , that N~ d provides us with a good insight into the behavior of

the ~ -,3 pruning a~~or~thm . Namely, we will see that it constitutes the worst case of

N n d ( ff l )  o , e r  ~11 discrete probability distributions.

Since Nnd was obtained as the limit of N
~~d

(in) , it is sufficient to show that , for alt

probabilit y distr ibutions 
~po(k)L

~~�k�~~
, we have:

� N,.~/ in) . (4.7)

in order to prove inequality (4.7), it is convenient to give a geometric interpretation of

both Nn,d and Ni t d(m) .

Consider the curve (
~

) defined by the Cartesian coordinates (x, y) through the

parame tric equations

(i) : ( x
~~~

Rd(t) , y . Sd(t)) ,

_ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
, . .- - - -, .~~~~~~~~~~~ -

..- ---~~~~~~~-~~~~~~~~~~~~~~~~~
_

_ _ -_~~~~= , ._ _.. -._, - ~~~~~~.- ~~~------ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

26

where the parameter t varies in the interval (0 , 1]. The integral of equation (4,6)

represents the area delimited by the curve (C), the x-axis and the paraLLels to the 7-axis

at the abscissas RIO) — I and Rd(!) — ~Fd/2~ (see Figure 4.1). Since Rd (O) — I and

Sd(O) — ~~Id/2J, the ter m rc td/2J of equation (4.6) can be accounted for by the area of the

rectangle delimited by the x-ax is , the 7-axis and the lines x — I and y — ,~Ld,’2J (the Latter

tine extends the curve (C) in a continuous way). Figure 4.1 represents the curve (C) and

its exten.scon in the case a — 3, d — 6. The area below the unbroken Lines represents the

quantity N
~,d.

27

24

21

18

15

12

9

6

3

I 
I 

0 I I I I I I 4
0 1 3 6 9 12 15 18 21 24 27

Rd(e)

Figure 4.1 - Geometric interpretation of Na,d and N
~,d(m)

The sum of equation (3.11) can also be represented along with the curve (C). It

-.-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



27

fol lows directLy from the relations of equattons (4.1) and (4.2) that the terms of the sum

represent the areas of the rectangles delimited by the lines z — R(~’/c _ J ) , x — R(e /c ) , y — 0

and y — R(~/c ) , for Ic — I , 2 2 r72-1 . The quantity Nf l d (m) represents therefore the area

of Figure 4.1 shown below the broken Lines.

Inequality (4.7), then, follows directly from the fact that , when t increases in (0 , 1],

R(t ) increases white 3(t) decreases.

5 — On the branching factor of the o.~—/~ pruning a’gorithm

We have deliberately chosenlo introduce first the case when the bottom values of a

game tree are drawn from a discrete probability distribution since it is of most interest in

ac tual applications. The case of a continuous distribution, however , lends itself to an

easie r ana lysis , and, since it constitutes the worst case over alL discrete probability

distributions , we  ~.itl, in this section , exami ,,e the integral of equation (4 .6) rather than

the series of equation (3.11).

5.1 — Pre~ious results

In Section 1, we introduced the branching fac tor as a cost measure for the work

involved ~n searching a tree. Rather than considering the number , Nad,  of terminaL

positions exam ~ned by a search algorithm , as a measure of performance of the algorithm,

we coutd have considered the tota l number , T
~,d, of nodes (termina l and tnternat) explored

during the search. In the case of the ~~~ pruning algori thm, since N
~,d, given by

equat ion (4 .6) , does not depend on the distribution function of the bottom values , we

deduce that T
~~d sat isfies:

- I + N,~~ ~ ... + N,.L d .

Since it can be checked easily that 0 ~ ~~~~~ 
� N,~,0 we obtain N,.~d � Tad  � dN

fl,d, and

therefore:

~ rn (T
ft ,d) h/ d 

- ~ rn (N fl d) h /
~
d 

- ~~~~~~~ 

~---.- - -~- -— —~~~~~~~~~~~~~ -_ - - -~~ - , -.--- 



-

28

Thus Definition 1.1 provides us wlth a measure of performance useful to compare search

algorithms. In the folLowing, we review some of the results which have already been

presented in the literature.

Minimax search

The minirnax search examines systematicalLy alt nodes of a tree. It, therefore ,

examines N
~~d ~d terminal nodes in a uniform tree of degree is and depth d, Leading to a

branching factor

- i s.

c~~/l procedure under optimal ordering

Slagle and Dixon [5, p. 2011 have shown that , when alL possible ~~~- and $-cut-offs

occur , the ~-~3 procedure examines

Na,d — ~td/21 + ~1d/2J -

terminal positions. In this case , the corresponding branching factor is

— ,~i12

o~.-/Z procedure (experimental results from C!])

Based on a series of simulation results , Fuller , Gaschni.g and Gillogty [1] have

argued that the formula

N
~,d — c(d) .r~

0J2d
~ 

0.277

constitutes a reasonable approximation to the number of bottom positions examined by the

~~~~~ 
procedure for smaLL values of a and d, and that I ~ c(d) � 2 (at Least for the range of

values they considered). For comparison purposes , let us assume that their approximation

cars be extrapo lated for any a and d. Provided that c(d) ”~ ~ I when d -. ~~~ , we obtain

In view of the results of Section 3.3, we can question the accuracy of the approx imation

for Large a since it folLows from Theorem 3.2 that

~ rn (T~,Ir4)] IM - O(nAn n) .

~~~~~~~~~~~--~~-- - .-..
~~~~~

, - .-..-~~~ .- .


~~~~~~—~~~~----~~~~~=-~~~~~~~~~ - . - ,-~~~~~~~~~~~~~~~~~~ - -- -~

29

~ procedure w i thout deep cut—o ff ~

Knuth and Moore [3] have analyzed a simpLer vers Ion of the ~-$ procedure by not

c onsidering the possibilities of deep cut-offs. This a-proce d.u.re is the same as the

ce-f? procedure except that no u-values are passed to the c~-/ 3 procedure; instead, the

Lower va lue ~ is always set to -
~~~ before explor ing the succ essors of a node. Knuth and

Moore have shown that the branching factor of this procedure satisfies

= G(a/tn it) .

Note that , since the 16-procedure always explores more nodes at any depth in a tree than

the full ~ -~3 procedure does in the same tree , ~~~(n) prov ides us with an upper bound for

5.2 — Bounds on the branching factor of the o~—,G procedure

In this section we will derive some lower and upper bounds on the branching factor

of the ~-g pruning algorithm. In particular , s ince the Lower bound we derive grows w~th a

as n/tn is, we will be able to conclude , using the result on the branching fac tor of the

~ -~3 procedure withrut deep cut-of fs established by Knuth and Moore in [3), that the

branching factor of the ~ -~8 procedure is S(n/ t n is).

We introduced in Section 4.1 the sequence of functions J’~
, — 0, 1, ..., from [0, 1] to

itself , and we observed that all functions 14 s hare the two fixed points 0 and I

(independent of n). Another common fixed point , wh ich depends on is, was introduced in

Section 3.3.

Lemma 5.1:

For a given is, aLt functions 1L’
for — 0, 1, .. ., share the common fixed point

!~ C (0 , 1) , the unique positive root of the equation

- 1 — 0 . .

Proof:

For c lar t ty, we wiLL drop the index is from in the fo lLowing.

30

Since f0(x) — x , ~ is certa inLy a fixed point of
~~

assume , for induct ion , that

f~..1
(r) = , then from the definition of we have

1(r) — I - {i - [f 1(r) fl4 _ - (j _ 1is) I2 — I - ~ i5
—

which shows that
~

is a fixed point common to alt functions 1L’ ~ — 0, 1, _.. I

Since r~ is a fixed point common to alt functions f~, ~ — 0, 1, ..., it is easy to evaluate

at this point the functions rL and s~ defined in Section 4.1. For £ — 1, 2, ._, we deduce that:

— ~L~r f l) — r~ / (I -). (5.1)

In particular , it follows from Lemma 3.5 that , for Large a:

— s~
(
~~) — is/in a. . (5.2)

Equations (5.1) and (5.2) will be useful to obtain the desired bounds in the remainder of

the section.

The geometric representation of equation (4 .6), given in Figur e 4.1, makes It easy to

der ive bounds on the quantity N
~,d. They are stated in the following.

Theorem 5.1:

The branching factor of the ~-~3 pruning aLgorithm in the search of a rug tree of

degree is satisfies:

n/tn ,~ — r~
/ (I - r ~

) < f~~ 13(n) < .hi~7(I-r~~
) — ~~~~ (5.3)

f or a — 2, 3

Proof:

Since, when t increases in (0 , 1), Rd(e) increases white Sd(t) decreases , it follows

directLy that for any ~ in [0 , 1) we have the following inequalities:

Rd(r
~
).Sd(ri) < ~~~~ < Rd(&.Sd(O) + [

~d~
1
~

- Rd(&).Sd(&. (5.4)

If we choose ~ — we have Rd(o() - (1 /(l..~~)]fd/21 and Sd(& -
~~~~~~~~~~~~ 

Since

Rd(I) — ~1d/21 and Sd(O) — ~W2j , inequality (5.3) follows immediately from inequality (5.4>

and the results of Lemma 3.5. I

As an immediate consequence , we obtain the fo llow ing.



31

Theorem 5.2:

The branching factor of the ~ -~3 pruning algorithm in the search of a rug tree of

degree is satisfies , f o r large is:

fr ~~~ (is) - O(a/t n i s ) .

Proof:

The result comes directly from the tower bound r~
/ ( I-r

~
) — is/in is of Theorem 5.1,

and fr om the upper bound .~~~ (is) obtained for the ~~~~~~ procedure without deep cut-of fs ,

which Knuth and Moore have shown to be e(n/ t n a). I

This results confirms , as was sugges ted by Knuth and Moore [3, p. 310), that deep

cut-of fs have only a second order effect on the behavior of the 
~-/~ 

pruning algorithm. On

the other hand, it shows that the formula proposed by Fuller , Gaschnig and Gillogly in [1)

and mentioned in Section 5.1, if it constitutes a reasonable approximation for small values

of is and d (the range of values they considered is is d � 12), is certainly not adequate for

Large values.

We note that the bounds of Theorem 5.1 were obtained without dtff iculty by

convenientLy choosing just one point, 
~~~~

, on the curve (C) since it was easy to evaluate

both Rd(r~
) and 3d~ra.). In the next section , using a different approach , we will derive a

tighter upper bound for Nfl d, and hence for

5.3 - Improved upper bound

Since, for d = 1, 2, ..., Nis d � N
~~d+I ~ ~~~~

then , if (N
fl,d) 1/ d tends to some Limit

when d tends to infinity as an ezien integer , this quantity tends to the same limit when d

tends to infinity as an odd integer. The refore , without toss of generali ty, we will onLy

consider , in this section , the case when d is an even integer. Let d — 26.

For x in [0 , 1] and for £ — 1, 2, ..., we define p
~
(x) —

-- -~ ..
~~~~~~~~~~~~~~ 

.— .
~~~~~~~~

. . . - ..- .--_. .-.

32

Lemma 5.2:

All functions p~, for i — 1, 2, ..., have the same absolute maximum , M~, in the

intervaL (0 , 1).

Proof:

From the definitions of r~(z) and :~(x) w e have for £ — 1, 2,

r~(z) — r 1 (f ~~j (x)]

and

s~(x) — s j (f ~ j (x)]

Therefore , f or £ 1, 2, ..., we also have, from the definition of

p~(x) —

The Lemma follows by observing that , f or £ — 1, 2, ..., ~~ is a one-to-one function from

[0, 1) to itself. I

Lemma 5.2 shows that , in order to study the maximum of p~(x) , when x C (0 , 1), it is

suff icient to study the maximum of the polynomial

pL(z) = I - x ’5 L._ (I x ’~~ for z C [0 , 1] .
1 - x x

Observe that M~ �
~1t’r~

) — [r~/(I-~~)J2, in particular , since it can be checked easily

that, for a — 2, 3, ..., r~ > .i~/ (J .~I~) , it follows that

M~ > is for a — 2, 3 (5.5)

Theorem 5.3

The branching factor of the ~-g pruning algorithm for a rug tree of degree a

satisfies:

~~
./

~~~~~~~, (5.6)

w here is defined in Lemma 5.2.

Proof:

From the definition of R26(t) , we obtain for h - 2, 3, ... :

— R2 6 2 (t ).r6(t) ‘~2h-2 ’h~~
By multipLication by S26(e) it follows that

R~6(t) .S26(e) — R , 62 (t) .S26_ 2(t) .p6 (t) • R2 6 2 (t).S2 6 2 (t) .r ~(t) .s 6(t) . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


F ~~~ ~~~~~~~

_

~~

-_

33

Since, for t C [0 , 1), all factors in this equation are non-negative , we de duc e, using the

results of Lemma 5.2 and the fact that s6(t) � it when t C [0 , 1), that:

R~,6(t) S26 (t) � M~R~, 62 (t)S26..2(t) + is ~~~~~ r~(t) .

Since, in addition,

R~(t) S2(e) — r~(e) s j (t) ~ ,~ r~(t)

it follows that for t C (0 , 13 and h — 1, 2,

R~6(t) S26(t) � is M,~~~ [r ~(t) + ... + r~(t)] . (5.7)

Let 1n,d be the integral defined in equation (4.6). By integrating inequality (5.7) over

[0 , 1] we see that ‘n,d satisfies:

‘n,2h ~ is M,~
6 1 [h (n -1)) — is(is-1) h

since r 4(O) — 1 and r/ I) — a. for £ — 1, 2 This shows that

~ ~h
+ rs (n- I) 6 M~

h I

Equation (5.6) now follows directLy from inequality (5.5). I

5.4 — Numerical results

Table 5.1 summarizes the results of this section. It presents the various tower and

upper bounds we have derived for the branching factor of the o~-/3 pruning algorithm from

equations (5.3) and (5.6). Although we have not been able to give an estimate for the

asympto tic growth of ‘v’~~~~, we can easily derive an upper bound for this quantity by

studying rug trees of depth 2 since:

M~ � N
~,2 � 2

~r~/(’-r~
) - [t~/(’-t~)J2 — 2n2/ tn is ,

which shows tha t .6~ ~ O(n / . t~~~) . The numerical results of Table 5.1 indicate that

is a much better upper bound for ~~~~jf’a) than /nt~
/ (I-!,) for the range of vaLues we

have cons idered.

L~~~~~~~~ ~~ ~~~~~. J

_ _ -~~~

34

tower bound upper bounds

is ~~~~~ ~~~~~ ‘~Ia./(’-I~
) from [3)

2 1.618 1.622 1.799 1.884
3 2.148 2.168 2.538 2.666
4 2.630 2.678 3.243 3.397
5 3.080 3.166 3.924 4.095
6 3.506 3.638 4.587 4.767
7 3.915 4.098 5.235 5.421
8 4.309 4.549 5.872 6.059
9 4.692 4.993 6.498 6.684
10 5.064 5.430 7.116 7.298
II 5.427 5.862 7.726 7.902
12 5.782 6.290 8.330 8.498
13 6.130 6.713 8.927 9.086
14 6.473 7.133 9.519 9.668
15 6.809 7.549 10.1 07 10.243
16 7.141 7.963 10.689 10.813
17 7.468 8.373 11.268 11.378
18 7.791 8.782 11.842 11.938
19 8.110 9.188 12.413 12.494
20 8.425 9.591 12.980 13.045
21 8.736 9.993 13.545 13.593
22 9.045 10.393 14.106 14.137
23 9.350 10.791 14.665 14.678
24 9.653 11.188 15.221 15.215
25 9.952 11.583 15.774 15.748
26 10.250 11.976 16.325 16.265
27 10.545 12.369 16.873 16.778
28 10.838 12.759 17.420 17.288
29 11.128 13.149 17.964 17.796
30 11.416 13.5 37 18.507 18.300
31 11.703 13.924 19.047 18.802
32 11.987 14.310 19.586

Table 5.1 - Bounds on the branching factor of the ~~~~~~~ pruning algorithm

6 - Conc ’usions and open problems

We have presented an analysis of the performance of the ~~~~~ pruning algorithm for

searc hing a uniform tree of degree is and depth d when the values assigned to the terminal

nodes are independent identically distributed random variables. The analysis takes into

account both shalLow and deep cut-offs and we have also considered the effect of

equat~ties between the values assigned to the terminal nodes.

A simpLe formula was derived, in Section 3, to measure the number of terminal

35

nodes examined by the ~~~~~~~ procedure w hen the bottom values are drawn fro m a finite

range accord ing to an arb itrary di.tcrete probability distribution. Although the formula can

be easiLy computed numerically, a direct analysis is made difficult by the presence of the

probability distribution. W hen only two distinct values can be assigned to the terminal

nodes , it is shown that the number of terminal nodes examined by the ~~~~~~~ procedure can

be at least O[(is/tn ~)d], and, in light of the results of Section 5, this corresponds to the

w orst case behavior of the algorithm (over all discrete probability distributions).

A formula was then presented in the form of an integral to measure the number of

terminal nodes explored by the c~-~ procedure when the bottom values are all distinct. An

analysis of the integral shows that the branching factor of the oe-,~3 pruning algorithm is

®(isJl.n a), a result which conf irms a claim by Knuth and Moore [3] that deep cut-offs only

have a second order ef fe r t on the behavior of the c~-~3 pruning algorithm.

Although the assumption used in Sections 4 and 5 when the bottom values are all

distinct is not realistic for most prac ~ic?i applications , the results we have derived from it

give us some insight into the worst case behavior of the ~~~~~~ pruning algorithm when

equalities between bot tom values are possible, and they are a usefu l comp lement to the

formula of Section 3. Similarly, the branc hing fac tor analyzed in Section 5 provides us

only with an asymp tot ic measure of performance for the ~-/ 3 pruning algori thm (i. e., for

trees of large depth). As indicated by the results of Section 3.3, however , the branching

factor can also be used as a realistic measure of the worst case even for smal l trees.

We have m easured the eff ic iency of the ~ -~3 pruning algorL thm by the average

number of terminal nodes explored by the algorithm , it would be interesting to also obt ain

an estima te for the standard deviation of this number.

The scheme we have considered for assigning values to terminal nodes of a uniform

tree tent itself easily to analysis, it is , however , very simplistic. Different schemes for

assigning static values have been proposed in [1], (3) and [4). Analyses of these schemes

—
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~ _ ._ 

__ —.— ___ .— -. ..- —.__ -—— _—. .—.—_—- —

36

would be helpful for various applications; a step in this direction was presented in [4) for

game trees of depth 2 and 3.

Acknowledgements

I wish to thank H. T. Kung and B. W. Weide for reading and commenting on earlier

drafts of this paper.

References

[1) Fuller , S. H., Gaschnig, J. G., and Giltogly, J. J., Analysis of the alpha-beta pruning
algorithm, Carnegie-Mellon University, Computer Science Department Report , July
1973.

[2) Gillogly, J. J., The Technology chess program , Artifici4t Intel1igeisce, Vol. 3, No. 3,
1972, pp. 145-163.

[3) Knuth, D. E., and Moore, P. W., An analysis of alpha- beta pruning, A.rtifu~41
fn.teW gence, Vol. 6, No. 4, 1975 , pp. 293-326.

[4) Newborn, M. M., The efficiency of the alpha-beta search on trees with
branc h-dependent terminal node scores , Arufici.csl !isteIli~ ertc e , Vol. 8, No. 2, 1977,
pp. 137-153.

[5) SlagLe , J. R., and Dixon, J. K., Experiments with some programs that search game trees ,
Journal of the ACM, Vol. 16, 1969, pp. 189-207. 

~~~
--. _-~~- —_ ~~-~~~~~~~~

.-, .


~~~~~~~~~~~~~~

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
--—--

~~~ 

,

~~~

..- --

~~

-

~~~~~~~~~

--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFI~D
SECURITY C L A S S I F I C A T L N OF THI S PAGE (W?..n 0., . Enter.d)

DED(
~~

1V
E~~

T A T U
~~

D A
~~E

READ INSTR UCT I ONS
“• “~~~~~~“ “ U ~ BEFORE COMPLETING FORM

I . REPORT N U M B E R GOVT A C C E S S I O N No. 3 R E C I P I E N T S C A T A L O G NUMBER

4. T I T L E ‘and SubtItle) S. TYPE OF REPORT & PERIOD covEllED

ON THE BRANCHIN G FACTOR OF THE ALPHA-BETA Interim
PRUNING ALGORIT HM 6. P E R F O R M I N G ORG. REPORT NUMBER

7. A IJTHO R(s) B. CONTRA CT OR GRANT NUMBER(.)
MCS75—222—55

Gerard M. Baudet N00014-76-C-0370; —_

Nr044-422
9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D ADDRESS 10. P R O G R A M ELEMENT , PROJECT , TASK

A R E A & WORK UNIT NUMB ERS
Carnegie-Mellon University
Computer Science Dept.
Pittsburgh , PA 15213 _____________________________

I I . C O N T R O L L I N G OFFICE N A M E A N D ADDRESS 12 . REPORT GATE

Office of Naval Research Sep tember 1977 _..—

Arl ington , VA 22217 13. NUMBER OF P A G E S

39

14 . M O N I T O R I N G AGENCY N A M E & ADDRESS(II dllf.r.nI from Conlroll1n~ Off Ice) IS. SECURITY CLASS. (of thi. r.port)

UNCLASSIFIED
15.. DECL ASSIFICAT ION /OOWN G RAD IN G

SCH ED U LE

15 DISTRIBUTION S T A T E M E N T (of thie Reporl)

Approved for public release; distribution unlimited.

17 . DISTRIBUTION S T A T E M E N T (ot IN. .b.1~sct .n(Sred In Block 20, II dIffere nI from Report)

IS . S U P P L E M E N T A R Y NO T E S

19 K E Y W O R D S fContIn.,. on rev.,.. aid. II nec.a..ry and Id.ntily by block numb.r)

20 ABSTR A C T (Co nt ~n~. on reve re. aid. If nec....,) and id.ntify by block numb.,)

An analysis of the alpha-beta pruning algorithm is presented which takes into
aI-.count both shal low and deep cut -o f f s. A formu la is first developed to measure the
average numbur of termina l nodes examined by the algorithm in a uniform tree of degree a
and depth d when ties are allowed among the bottom positions: specifically, all bottom
vaLues are assj mod to be independent identically distributed random variables drawn from
a discrete probability distribution. A worst case analysis over alt possible probability
distributions is then presented b~~ considering the limiting case when the discrete

FORM
.,. contittued

DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLET E UNC LASSIFIED
S/N 0 10 2 - 0 14 - 6 6 0 1

SECURITY CLASS IFICATION OF THIS PAGE (WNan b.f. jnt.e.d)

~~-~~~~~~~~~~~~~~~~~~ - .

~~~~~~~~~

.

UNCLASSIFIED
41Ty C L A S S I F I C A T I O N  .JF THIS PAGE (Wh .n Dei. Ent.,.d)

20. abstract  continued

probability distr ibution tends to a c ontinuous probability distr ibution. The branching
factor of the alpha-beta pruning algorithm is shown to grow w ith a as S(n ,1.n a) , therefore
confirming a claim by Knuth and Moore that deep cut-off s only have a second order effect
on the behavior of the algorithm.

1~NCLASS IFIED
S EC URITY CLA SSIFI CAT 1ON OF THIS PA GE(W1~.n Del. Enl.r.d)

L .
~ -~~~~~~~---.- — - -— .--- . , .


